
D2IM-Net: Learning 
Detail Disentangled 
Implicit Fields from 
Single Images

Manyi Li Hao Zhang

Dec 2020

By Alberto Tono



Motivation

IM-NET Learning Implicit Fields for Generative Shape Modeling

Aimed at recovering a detail disentangled reconstruction from:

• Coarse 3d shapes as implicit field -> topological shape structures

• Fine detail --> with surface features

Learning Implicit Fields for Generative Shape Modeling

Zhiqin Chen, Hao Zhang

Paste-n-reconstruct

https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+H
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Motivation
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Assumption: the coarse 
shape is smooth and lies 
close to the surface.
The smoothness herein 
implies that the (residual) 
displacement field contains 
information about surface 
details.

https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+H


Weighted Sampling

Disn: Deep implicit surface network for high-quality single-view 3d reconstruction

Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann.

Learning Implicit Fields for Generative Shape Modeling
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Randomly sample
near object surfaces

Point densities as 
sampling weights

https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+H


Network Pipeline
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global feature vector + X,Y,Z

https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+H


Network Pipeline

Disn: Deep implicit surface network for high-quality single-view 3d reconstruction

Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann.

Why in 2D Dis Map and not 3D:
• learn the small-scale details 

with contemporary CNN 
networks.

• aligns the details with the input 
images to compute the 
Laplacian loss



Network Pipeline
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https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+H


Losses

Laplacian-steered neural style transfer. 2017

Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua.



Laplacian Loss

Laplacian-steered neural style transfer. 2017

Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua.

Front displacement map



Evaluation Metrics

Bspnet: Generating compact meshes via binary space partitioning
Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang.

Edge Chamfer Distance (ECD)

Unit normal vectors for 
respective points



PROS CONS

• Assumption: surface details defined by a height field
over flat surface

• Unable to recover surface details over sufficiently 
curved surfaces

• Laplacian loss is defined only on the front surface of 
the recovered shape

• View dependent

• Small-scale geometric details
• Not overfitting to specific inputs
• No symmetry priors or color/material cues

Credit to


