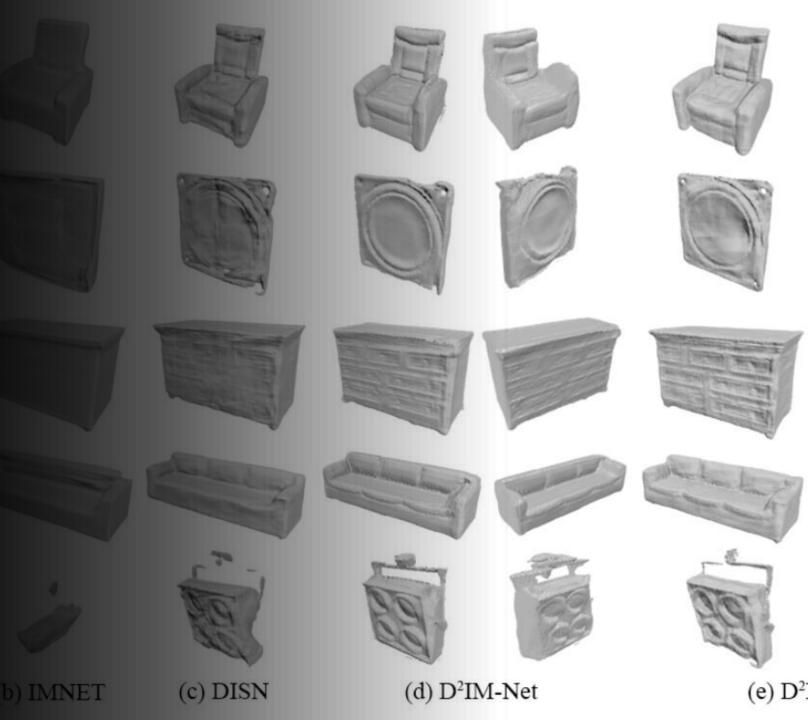
D²IM-Net: Learning Detail Disentangled Implicit Fields from Single Images

Manyi Li Hao Zhang Dec 2020

By Alberto Tono



Motivation

IM-NET Learning Implicit Fields for Generative Shape Modeling

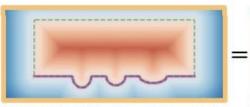
Aimed at recovering a *detail disentangled reconstruction* from:

- **Coarse** 3d shapes as implicit field -> **topological shape structures**
- Fine detail --> with surface features

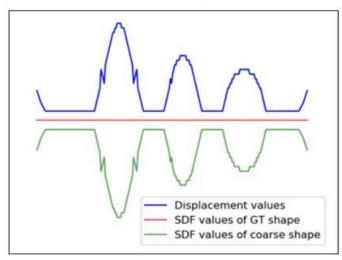
Paste-n-reconstruct

Learning Implicit Fields for Generative Shape Modeling Zhiqin Chen, Hao Zhang

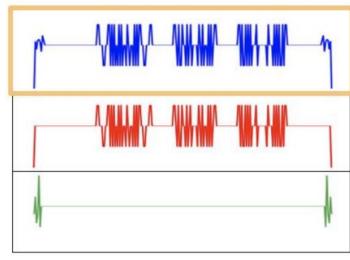
Motivation



(a) SDF of GT shape in dashed lines; front surface in thick purple.



(d) Plot of SDF and displacement field values along the front surface.



(c) Displacement field;

front surface in light purple.

+

(b) SDF of coarse shape in dashed

lines; front surface in light purple.

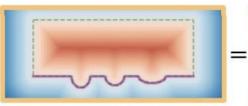
(e) Plot of Laplacian values of the fields shown on the left.

 $F_{SDF}(p) = f_B(p) + f_D(p),$ $f_B : \mathbb{R}^3 \to \mathbb{R}, f_D : \mathbb{R}^3 \to \mathbb{R},$

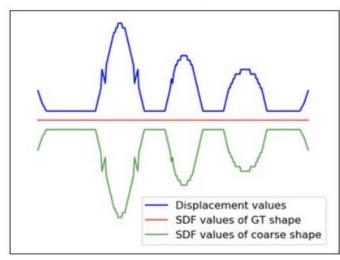
$\Delta f_B \approx 0$

 $\Delta f_D(p) = \Delta F_{SDF}(p), |dist(p, S)| < \delta.$

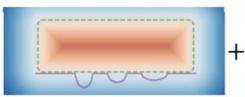
Motivation



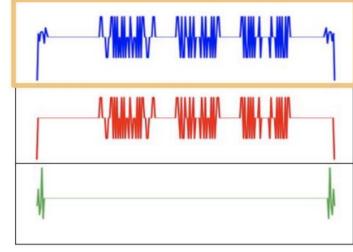
(a) SDF of GT shape in dashed lines; front surface in thick purple.



(d) Plot of SDF and displacement field values along the front surface.



(b) SDF of coarse shape in dashed lines; front surface in light purple.



(c) Displacement field;

front surface in light purple.

(e) Plot of Laplacian values of the fields shown on the left.

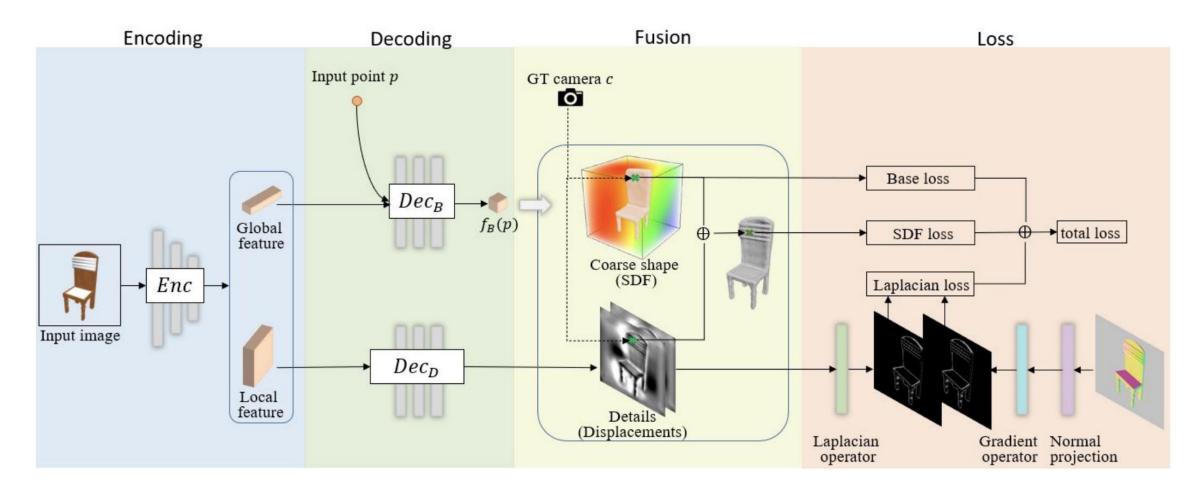
Assumption: the coarse shape is smooth and lies close to the surface. The smoothness herein implies that the (residual) displacement field contains information about surface details.

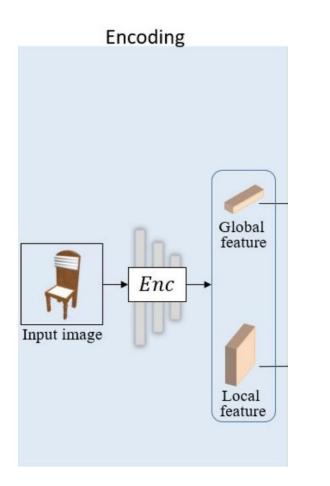
Weighted Sampling

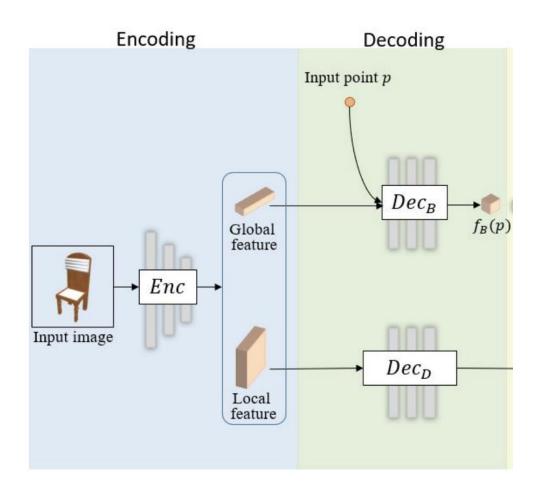
Randomly sample Point densities as sampling weights

Learning Implicit Fields for Generative Shape Modeling Zhiqin Chen, Hao Zhang

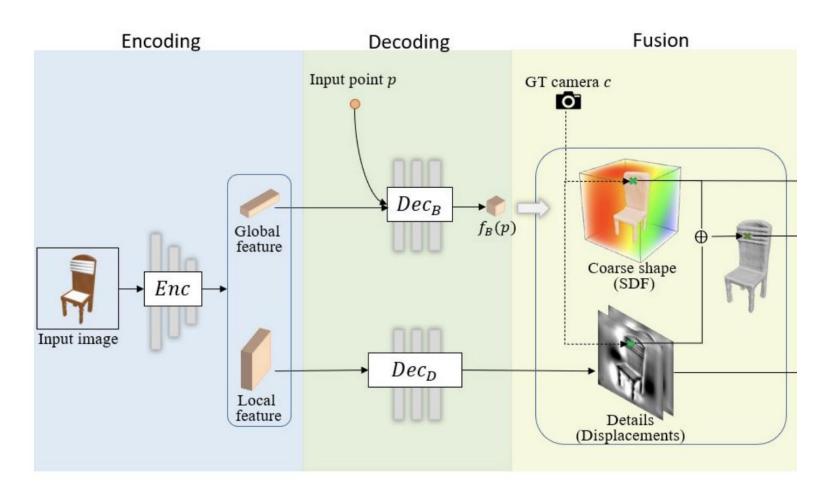
Disn: Deep implicit surface network for high-quality single-view 3d reconstruction Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann.

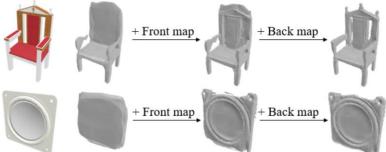






global feature vector + X,Y,Z





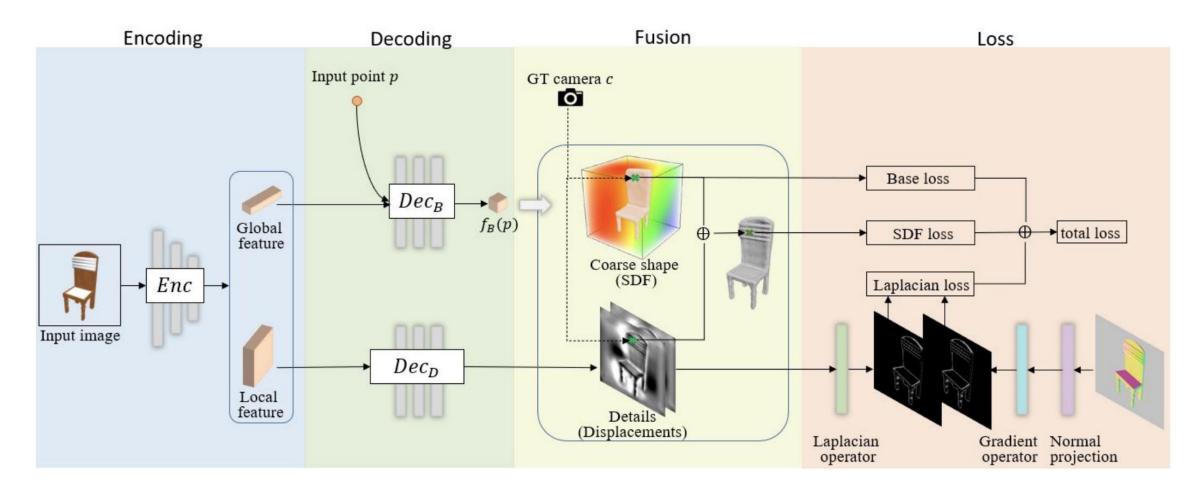
 $F_{SDF}(p) = \begin{cases} f_B(p) + f_{DF}(u(p)), p \in P_F, \\ f_B(p) + f_{DB}(u(p)), otherwise, \end{cases}$ $\triangle f_{DF}(u(p)) = \triangle F_{SDF}(p), p \in P_F, \\ f_B : \mathbb{R}^3 \to \mathbb{R}, f_{DF} : \mathbb{R}^2 \to \mathbb{R}, f_{DB} : \mathbb{R}^2 \to \mathbb{R}, \end{cases}$

Why in 2D Dis Map and not 3D:

- learn the small-scale details with contemporary CNN networks.
- aligns the details with the input images to compute the Laplacian loss

Disn: Deep implicit surface network for high-quality single-view 3d reconstruction

Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann.



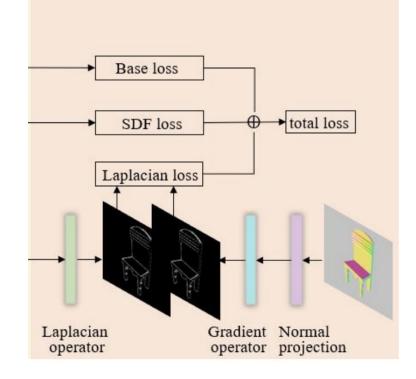
Losses

$$L_B = \frac{1}{M} \sum_{i=1}^{M} \|f_B(p_i) - F_{SDF}(p_i)\|_2^2$$

$$L_{sdf} = \frac{1}{M} \sum_{i=1}^{M} |f(p_i) - F_{SDF}(p_i)|$$

$$L_{lap} = \frac{1}{|P_F|} \sum_{p_i \in P_F} \| \triangle f_{DF}(u(p_i)) - l(u(p_i)) \|_2^2$$

$$L = L_B + L_{lap} + L_{sdf}$$



Laplacian-steered neural style transfer. 2017 Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua.

Laplacian Loss

$$L_{lap} = \frac{1}{|P_F|} \sum_{p_i \in P_F} \| \triangle f_{DF}(u(p_i)) - l(u(p_i)) \|_2^2.$$

Front displacement map

$$\Delta f_{DF}(u(p)) = \frac{\partial^2 f_{DF}(u(p))}{\partial (u_x)^2} + \frac{\partial^2 f_{DF}(u(p))}{\partial (u_y)^2}.$$
$$N'(u(p)) = (N(u(p)) \cdot \frac{\partial p'}{\partial u_x}, N(u(p)) \cdot \frac{\partial p'}{\partial u_x})$$

$$L_{lap} = \frac{1}{|P_F|} \sum_{p_i \in P_F} \left\| \bigtriangleup f'_{DF}(u(p_i)) - l'(u(p_i)) \right\|_2^2$$
$$l'(u(p)) = \frac{N(u(p))}{\partial u_x} + \frac{N(u(p))}{\partial u_y}$$
$$\bigtriangleup f'_{DF}(u(p)) = \frac{f_{DF}(u(p))}{\partial^2 u_x} \cdot \frac{\partial u_x}{\partial p'_x} + \frac{f_{DF}(u(p))}{\partial^2 u_y} \cdot \frac{\partial u_y}{\partial p'_y}.$$

$$\partial u_x, \mathcal{W}(u(p)) = (\mathcal{W}(u(p)) + \partial u_x, \mathcal{W}(u(p)) + \partial u_y),$$

 $\partial u_y, \mathcal{W}(u(p)) + \partial u_y, \mathcal{W}(u(p)) + \partial u_y),$

 $N'(u(p)) = (N(u(p)) \cdot \frac{\partial p}{\partial u_x}, N(u(p)) \cdot \frac{\partial p}{\partial u_y}),$

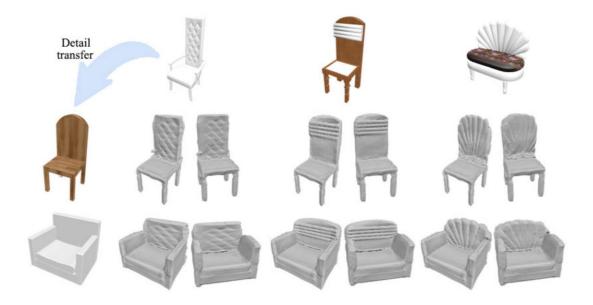
Laplacian-steered neural style transfer. 2017

Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua.

Evaluation Metrics

Unit normal vectors for respective points

Edge Chamfer Distance (ECD)
$$\sigma(p_i) = min_{p_j \in \mathcal{N}_i} |n_i \cdot n_j|,$$



Bspnet: Generating compact meshes via binary space partitioning **Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang.**

PROS

- Small-scale geometric details
- Not overfitting to specific inputs
- No symmetry priors or color/material cues

CONS

- Assumption: surface details defined by a **height field** over **flat surface**
- Unable to recover surface details over **sufficiently** curved surfaces

- Laplacian loss is defined only on the front surface of the recovered shape
- View dependent